Cilia structure

9 doublet + 2 singlet arrangement of microtubules (arrows in A).
Basal body (base of cilium below cell membrane) consists of 9 microtubule triplets (arrow in B) with no central microtubules
Axonemal dynein—ATPase that links peripheral 9 doublets and causes bending of cilium by differential sliding of doublets.

Kartagener syndrome (1° ciliary dyskinesia)-

45

immotile cilia due to a dynein arm defect. <u>Results in ↓ male and female fertility due to</u> immotile sperm and dysfunctional fallopian tube cilia, respectively; ↑ risk of ectopic pregnancy. <u>Can cause bronchiectasis</u>, recurrent sinusitis, chronic ear infections, <u>conductive hearing loss</u>, and situs inversus (eg, dextrocardia on CXR **C**).

Sodium-potassium pump

Na⁺-K⁺ ATPase is located in the plasma membrane with ATP site on cytosolic side. For each ATP consumed, 3Na⁺ go out of the cell (pump phosphorylated) and 2K⁺ come into the cell (pump dephosphorylated). Plasma membrane is an asymmetric lipid

bilayer containing cholesterol, phospholipids, sphingolipids, glycolipids, and proteins.

Pumpkin = pump K± in,

Ouabain inhibits by binding to K⁺ site. Cardiac glycosides (digoxin and digitoxin) directly inhibit the Na⁺-K⁺ ATPase, which leads to indirect inhibition of Na⁺/Ca²⁺ exchange $\rightarrow \uparrow [Ca^{2+}]_i \rightarrow \uparrow$ cardiac contractility.

Helper T cells	Th1 cell	Th2 cell
	Secretes IFN- <u>y and IL-2</u>	Secretes IL-4, IL-5, IL-6, IL-10, IL-13
	Activates macrophages and cytotoxic T cells	Recruits eosinophils for parasite defense and promotes IgE production by B cells
	Differentiation induced by IFN- γ and IL-12	Differentiation induced by IL-2 and IL-4
	Inhibited by IL-4 and IL-10 (from Th2 cell)	Inhibited by IFN- γ (from Th1 cell)
	Macrophage-lymphocyte <u>interaction—dendritie</u> <u>which</u> stimulates T cells to differentiate into T macrophages. Helper T cells have CD4, which binds to MHC	e cells, macrophages, and other APCs release IL-12, Th1 cells. Th1 cells release IFN-γ to stimulate C II on APCs.
Cytotoxic T cells	Kill virus-infected, neoplastic, and donor graft of Release cytotoxic granules containing preforme Cytotoxic T cells have CD8, which binds to MI	cells by inducing apoptosis. d proteins (eg, perforin, granzyme B). HC I on virus-infected cells <mark>.</mark>
Regulatory T cells	Help maintain specific immune tolerance by su Identified by expression of CD3, CD4, CD25, a Activated regulatory T <u>cells (Tregs)</u> produce ant	ppressing CD4 and CD8 T-cell effector functions. nd FOXP3 <mark>.</mark> i-inflammatory cytokines (eg, IL-10, TGF-β)
	IPEX (Immune dysregulation, Polyendocrino genetic deficiency of FOXP3 → autoimmunity nail dystrophy, dermatitis, and/or other autoin diabetes in male infants.	pathy, Enteropathy, X-linked) syndrome— y. Characterized by enteropathy, endocrinopathy, mune dermatologic conditions. Associated with

T- and B-cell activation	<u>APCs: B cells, dendritic cells, Langerhans cells, mac</u> Two signals are required for T-cell activation, B-cell a	rophages <mark>.</mark> activation, and class switching.	
T-cell activation	 Dendritic cell (specialized APC) samples antigen, processes antigen, and migrates to the draining lymph node. T-cell activation (signal 1): antigen is presented on MHC II and recognized by TCR on Th (CD4+) cell. Endogenous or cross-presented antigen is presented on MHC I to Tc (CD8+) cell. Proliferation and survival (signal 2): costimulatory signal via interaction of B7 protein on dendritic cell (CD80/86) and CD28 on naïve T cell. Th cell activates and produces cytokines. Tc cell activates and is able to recognize and kill virus-infected cell. 	Dendritic cell HE L/II FC CD4/8 CD4/8 CD4/8 CD28 E	Swapped Figure
B-cell activation and class switching	 Th-cell activation as above. B-cell receptor-mediated endocytosis; foreign antigen is presented on MHC II and recognized by TCR on Th cell. CD40 receptor on B cell binds CD40 ligand (CD40L) on Th cell. Th cell secretes cytokines that determine Ig class switching of B cell. B cell activates and undergoes class switching, affinity maturation, and antibody production. 	TCR CD4 CD40 Cytokines B cell b cell b cell cytokines switching	Swapped Figure

Hypersens	itivity	types ((continued)	
-----------	---------	---------	-------------	--

Hypersensitivity types (continued)	
Type III	Immune complex—antigen-antibody (IgG) complexes activate complement, which attracts neutrophils; neutrophils release lysosomal enzymes.Can be associated with vasculitis and systemic manifestations.	 In type III reaction, imagine an immune complex as 3 things stuck together: antigenantibody-complement. Examples: SLE Polyarteritis nodosa Poststreptococcal glomerulonephritis
Enzymes from neutrophils damage endothelial cells	Serum sickness —an immune complex disease in which antibodies to foreign proteins are produced (takes 5 days). Immune complexes form and are deposited in membranes, where they fix complement (leads to tissue damage). More common than Arthus reaction.	Most serum sickness is now caused by drugs (not serum) acting as haptens. Fever, urticaria, arthralgia, proteinuria, lymphadenopathy occur 5–10 days after antigen exposure.
	Arthus reaction—a local subacute antibody- mediated hypersensitivity reaction. Intradermal injection of antigen into a presensitized (has circulating IgG) individual leads to immune complex formation in the skin. Characterized by edema, necrosis, and activation of complement.	Antigen-antibody complexes cause the Arthus reaction.
Type IV	Two mechanisms, each involving T cells:	Response does not involve antibodies (vs types I,
Antigen presenting cell Antigen Sensitized Th1 cell Cytokines	 Direct cell cytotoxicity: CD8+ cytotoxic T cells kill targeted cells. Delayed-type hypersensitivity: sensitized CD4+ helper T cells encounter antigen and release cytokines → inflammation and macrophage activation. 	 II, and III). Example: Type 1 diabetes mellitus Examples: Contact dermatitis (eg, poison ivy, nickel allergy) Graft-versus-host disease Tests: PPD, patch test. 4T's: T cells, Transplant rejections, TB skin tests, Touching (contact dermatitis). Fourth (type) and last (delayed).
Activated macrophage		

Swapped Figure

Bacterial genetics

Transformation	Competent bacteria are able to bind and import short pieces of environmental naked bacterial chromosomal DNA (from bacterial cell lysis). The transfer and expression of newly transferred genes is called transformation. A feature of many bacteria, especially <i>S</i> <i>pneumoniae</i> , <i>H influenzae</i> type B, and <i>Neisseria</i> (SHiN). Any DNA can be used. Adding deoxyribonuclease to environment will degrade naked DNA in medium → no transformation seen.	Degraded uncombined NA PODO DNA DNA DNA DNA DNA Donor DNA Figure Naked DNA Recipient cell Transformed cell ₪	, 10
Conjugation			
F ⁺ × F ⁻	F ⁺ plasmid contains genes required for sex pilus and conjugation. Bacteria without this plasmid are termed F ⁻ . Sex pilus on F ⁺ bacterium contacts F ⁻ bacterium. A single strand of plasmid DNA is transferred across the conjugal bridge ("mating bridge"). No transfer of chromosomal DNA.	$\begin{array}{c} \text{Sex pilus} \\ \text{Plasmid} \\ \hline \\ F^+ \text{cell} \\ F^- \text{cell} \\ \hline \\ F^- \text{cell} \\ \hline \\ F^+ \text{cell} \\ \hline \\ F^+ \text{cell} \\ \hline \\ F^- \text{cell} \\$	v re
Hfr×F⁻	F ⁺ plasmid can become incorporated into bacterial chromosomal DNA, termed high- frequency recombination (Hfr) cell. <u>Transfer</u> of leading part of plasmid and a few flanking chromosomal genes. High frequency recombination may integrate some of those bacterial genes. The recipient cell remains F= but now may have new bacterial genes.	Plasmid incorporates into bacterial DNA Plasmid	w Jre
Transduction			
Generalized	A "packaging" event. Lytic phage infects bacterium, leading to cleavage of bacterial DNA. Parts of bacterial chromosomal DNA may become packaged in phage capsid. Phage infects another bacterium, transferring these genes.	Lytic phage Bacteria Bacterial DNA Bacterial DNA Bacterial DNA package in phage capsid	e ed re
Specialized	An "excision" event. Lysogenic phage infects bacterium; viral DNA incorporates into bacterial chromosome. When phage DNA is excised, flanking bacterial genes may be excised with it. DNA is packaged into phage capsid and can infect another bacterium. Genes for the following 5 bacterial toxins are encoded in a lysogenic phage (ABCD'S): Group A strep erythrogenic toxin, Botulinum toxin, Cholera toxin, Diphtheria toxin, Shiga toxin	Viral DNA phage particles carry bacterial DNA	

Time course of untreated HIV infection

► ENDOCRINE—PHARMACOLOGY

Diabetes mellitus management	 Treatment strategies: Type 1 DM—dietary modifie Type 2 DM—dietary modified injectables, insulin replacement Gestational DM (GDM)—dia modification fails 	eations, insulin replacement eations and exercise for weight loss ent etary modifications, exercise, insu	; oral agents, non-insulin lin replacement if lifestyle
DRUG CLASSES	CLINICAL USE	ACTION	RISKS/CONCERNS
Insulin preparations			
Insulin, rapid <u>acting</u> Lispro, aspart, g l ulisine	Type 1 DM, type 2 DM, GDM (postprandial glucose control).	Binds insulin receptor (tyrosine kinase activity). Liver: † glucose stored as glycogen. Muscle: † glycogen, protein synthesis; † K [±] uptake. Fat: † TG storage.	Hypoglycemia, lipodystrophy, rare hypersensitivity reactions.
Insulin, short acting Regular	Type 1 DM, type 2 DM, GDM, DKA (IV), hyperkalemia (+ glucose), stress hyperglycemia.		
Insulin, intermediate acting NPH	Type 1 DM, type 2 DM, GDM.		
Insulin, long acting Detemir, glargine	Type 1 DM, type 2 DM, GDM (basal glucose control).		
Oral drugs			
Biguanides Metformin	Oral. First-line therapy in type 2 DM, causes modest weight loss.Can be used in patients without islet function.	Inhibit hepatic gluconeogenesis and the action of glucagon. ↓ gluconeogenesis, ↑ glycolysis, ↑ peripheral glucose uptake (↑ insulin sensitivity).	GI upset; most serious adverse effect is lactic acidosis (thus contraindicated in renal insufficiency).
Sulfonylureas First generation: chlorpropamide, tolbutamide Second generation: glimepiride, glipizide, glyburide	Stimulate release of endogenous insulin in type 2 DM. Require some islet function, so useless in type 1 DM.	Close K [±] channel in β cell membrane → cell depolarizes → insulin release via † Ca ^{2±} influx.	 Risk of hypoglycemia † in renal failure, weight gain. First generation: disulfiram-like effects. Second generation: hypoglycemia.
Glitazones/ thiazolidinediones Pioglitazone, rosiglitazone	Used as monotherapy in type DM or combined with above agents. Safe to use in renal impairment.	 f insulin sensitivity in peripheral tissue. Binds to PPAR-γ nuclear transcription regulator.^a 	Weight gain, edema, HF, † risk of fractures.

MECHANISM	Selective estrogen receptor modulators (SERMs)—receptor antagonists in breast and agonists in bone. Block the binding of estrogen to ER ⊕ cells.
CLINICAL USE	Breast cancer treatment (tamoxifen only) and prevention. Raloxifene also useful to prevent osteoporosis.
ADVERSE EFFECTS	 Tamoxifen—partial agonist in endometrium, which the risk of endometrial cancer; "hot flashes." Raloxifene—no t in endometrial carcinoma (so you can relax!), because it is an estrogen receptor antagonist in endometrial tissue. Both t risk of thromboembolic events (eg, DVT, PE).

Tamoxifen, raloxifene

Trastuzumab (Herceptin)

MECHANISM	Monoclonal antibody against HER-2 (<i>c-erbB2</i>), a tyrosine kinase receptor. Helps kill cancer cells that overexpress HER-2, through inhibition of HER2-initiated cellular signaling and antibody-dependent cytotoxicity.
CLINICAL USE	HER-2 \oplus breast cancer and gastric cancer (tras2zumab).
ADVERSE EFFECTS	Cardiotoxicity. "Heartceptin" damages the heart.

Vemurafenib

MECHANISM	Small molecule inhibitor of <i>BRAF</i> oncogene ⊕ melanoma. VEmuRAF-enib is for V600E- mutated BRAF inhibition.
CLINICAL USE	Metastatic melanoma.
Tumor lysis syndrome	Oncologic emergency triggered by massive tumor cell lysis, most often in lymphomas/leukemias.

Rasburicase

New Fact

New Fact	MECHANISM	Recombinant uricase that catalyzes metabolism of uric acid to allantoin.
Fact	CLINICAL USE	Prevention and treatment of tumor lysis syndrome.