Textbooks and Course Syllabi

Limit your use of textbooks and course syllabi for Step 1 review. Many textbooks are too detailed for high-yield review and include material that is generally not tested on the USMLE Step 1 (eg, drug dosages, complex chemical structures). Syllabi, although familiar, are inconsistent across medical schools and frequently reflect the emphasis of individual faculty, which often does not correspond to that of the USMLE Step 1. Syllabi also tend to be less organized than top-rated books and generally contain fewer diagrams and study questions.

Integration of AI in Medical Education: Transforming USMLE Preparation

The integration of AI into education signals a paradigm shift in the acquisition and application of medical knowledge. AI's increasing ability to process extensive data sets and adapt to various learning styles makes it an attractive tool in medical training and practice.¹⁷ Studies have demonstrated that AI language models are capable of achieving high accuracy rates when answering USMLE-style questions, underscoring its potential in supporting medical education.¹⁸

Although undeniably powerful, effectively utilizing AI as a study tool requires both practice and individual trial and error. We suggest the following approaches and prompts that might help learners more effectively harness AI for exam preparation

Tailored Mnemonic Creation: Devise unique mnemonics to aid in memorizing complex medical terms efficiently. AI models can be highly creative in generating new ones, although feedback and iteration will likely be needed to produce mnemonics that are both accurate and memorable.

Example prompt: Create a food-related mnemonic for remembering adverse effects 1, 2, and 3 of Drug A.

Custom Summarization of Medical Texts: Efficiently condense extensive medical literature into concise summaries, facilitating efficient and rapid topic reviews.

Example prompt: Summarize this medical school lecture into bullet points. Decrease length by 80%.

AI-Generated Custom Quizzes: Create focused practice questions.

Example Prompt: Create three vignette-style multiple choice questions testing presentations of lysosomal storage disorders.

<u>Clinical Case Simulations:</u> Utilize AI-powered simulations of realistic clinical scenarios to practice decision-making skills and application of medical knowledge.

Example prompt: Create an exercise to practice analyzing acid-base disorders requiring Winter's formula with step-by-step explanations.

Personalized Learning Schedules: Create customized study schedules, adjusting time allocation based on challenging subjects. Modify schedules daily based on progress.

Example prompt: Prepare a schedule to review this book over 4 weeks.

Though both exciting and promising, pitfalls of using AI models for studying include the potential for outdated information or reliance on data that are not validated, resulting in a potential source of misinformation. AI can become unintentionally trained with human biases, and thus produce results that further reinforce or perpetuate potentially harmful biases. When using AI for personal studying, always validate information and maintain a critical eye when creating prompts.

AI is clearly a rapidly evolving study tool, however, how it can be best integrated with proven study methods remains to be seen. For the most recent updates on effectively leveraging AI in medical education, we encourage you to explore our blog at firstaidteam.com and scan a variety of student-centered discussion forums.

► TEST-TAKING STRATEGIES

Your test performance will be influenced by both your knowledge and your test-taking skills. You can strengthen your performance by considering each of these factors. Test-taking skills and strategies should be developed and perfected well in advance of the test date so that you can concentrate on the test itself. We suggest that you try the following strategies to see if they might work for you.

Pacing

You have seven hours to complete up to 280 questions. Note that each onehour block contains up to 40 questions. This works out to approximately 90 seconds per question. We recommend following the "1 minute rule" to pace yourself. Spend no more than 1 minute on each question. If you are still unsure about the answer after this time, mark the question, make an educated guess, and move on. Following this rule, you should have approximately 20 minutes left after all questions are answered, which you can use to revisit all of your marked questions. Remember that some questions may be experimental and do not count for points (and reassure yourself that these experimental questions are the ones that are stumping you). In the past, pacing errors have been detrimental to the performance of even highly prepared examinees. The bottom line is to keep one eye on the clock at all times!

Practice! Develop your test-taking skills and strategies well before the test date.

 Time management is an important skill for exam success.

Bacillus cereus

Gram ⊕ rod. Causes food poisoning. Spores survive cooking rice (reheated rice syndrome).
Keeping rice warm results in germination of spores and enterotoxin formation.
Emetic type causes nausea and vomiting within 1–5 hours. Caused by cereulide, a preformed toxin.
Diarrheal type causes watery, nonbloody diarrhea and GI pain within 8–18 hours.
Management: supportive care (antibiotics are ineffective against toxins).

Clostridioides difficile

shock.

*

Produces toxins A and B, which damage enterocytes. Both toxins lead to watery diarrhea → pseudomembranous colitis A. Often 2° to antibiotic use, especially clindamycin, ampicillin, cephalosporins, fluoroquinolones; associated with PPIs. Fulminant infection: toxic megacolon, ileus, **D***ifficile* causes **d***i*arrhea.

Diagnosed by PCR or antigen detection of one or both toxins in stool.

Treatment: oral vancomycin or fidaxomicin. For recurrent cases, consider repeating prior regimen or fecal microbiota transplant.

Clostridia

Gram ⊕, spore-forming, obligate anaerobic rods. Tetanus toxin and botulinum toxin are proteases that cleave SNARE proteins involved in neurotransmission.

Clostridium tetani Tetanus toxin Renshaw cell (inhibitory neuron) Motor neuron Spasic paralysis	Pathogen is noninvasive and remains localized to wound site. Produces tetanospasmin, an exotoxin causing tetanus. Tetanospasmin spreads by retrograde axonal transport to CNS and blocks release of GABA and glycine from Renshaw cells in spinal cord. Causes spastic paralysis, trismus (lockjaw), risus sardonicus (raised eyebrows and open grin), opisthotonos (spasms of spinal extensors).	Tetanus is tetanic paralysis. Prevent with tetanus vaccine. Treat with antitoxin +/- vaccine booster, antibiotics, diazepam (for muscle spasms), and wound debridement.	new image for 2024 2nd pass Revised image for 2024 3rd pass
Clostridium botulinum Motor No stimulation flaccid paralysis	Produces a heat-labile toxin that damages <u>SNARE</u> proteins, thus preventing ACh release at the neuromuscular junction, causing botulism. In babies, ingestion of spores (eg, in honey) leads to disease (floppy baby syndrome). In adults, disease is caused by ingestion of preformed toxin (eg, in canned food). Symptoms of botulism (the 5 D's): diplopia, dysarthria, dysphagia, dyspnea, descending flaccid paralysis. Does not present with sensory deficits.	 Botulinum is from bad bottles of food, juice, and honey. Treatment: human botulinum immunoglobulin. Local botulinum toxin A (Botox) injections used to treat focal dystonia, hyperhidrosis, muscle spasms, and cosmetic reduction of facial wrinkles. 	new image for 2024 2nd pass Revised image for 2024 3rd pass
Clostridium perfringens	Produces α-toxin (lecithinase, a phospholipase) that can cause myonecrosis (gas gangrene A; presents as soft tissue crepitus) and hemolysis. If heavily spore-contaminated food is cooked but left standing too long at < 60°C, spore germinate → vegetative bacteria ingested → enterotoxin → late-onset (10–12 hours) food poisoning symptoms, resolution in 24 hours.	<i>Perfringens</i> perforates a gangrenous leg. Spontaneous gas gangrene (via hematogenous seeding; associated with colonic malignancy) is most commonly caused by <i>Clostridium septicum</i> .	

DRUG	MECHANISM	ADVERSE EFFECTS
Protease inhibitors		
Atazanavir Darunavir Lopinavir Ritonavir	Prevents maturation of new virions. Maturation depends on HIV-1 protease (<i>pol</i> gene), which cleaves the polypeptide products of HIV mRNA into their functional parts. All protease inhibitors require boosting with either ritonavir or cobicistat. Navir (never) tease a protease.	 Hyperglycemia, GI intolerance (nausea, diarrhea). Rifampin (potent CYP/UGT inducer) ↓ protease inhibitor concentrations; use rifabutin instead. Ritonavir (cytochrome P-450 inhibitor) is only used as a boosting agent.
Entry inhibitors		
Enfuvirtide	Binds gp41, inhibiting viral entry. En <mark>fu</mark> virtide inhibits <mark>fu</mark> sion.	Skin reaction at injection sites.
Maraviroc	Binds CCR-5 on surface of T cells/monocytes, inhibiting interaction with gp120. Maraviroc inhibits docking.	
	ENTRY ATACHMENT Maraviroc PENETRATION Enfuviride Uncoating Reverse transcription NTEGRASE Bictegravir Cabotegravir Dolutegravir Rategravir Rategravir Cabote	<section-header>REVERSE TANSCRIPTASE PROVINCE Province Pro</section-header>

HIV therapy (continued)

image for 2024 2nd pass

^aAll protease inhibitors require boosting with either ritonavir (protease inhibitor only used as a boosting agent) or cobicistat (cytochrome P450 inhibitor).

© 2024 First Aid for the USMLE Step 1

Gender- and sexuality- inclusive history taking	 Avoid making assumptions about sexual orientation, gender identity, gender expression, and behavior (eg, a patient who identifies as heterosexual may engage in same-sex sexual activity). Use gender-neutral terms when referring to the patient or the patient's family (eg, "partner" rather than "husband" or "wife") upon first meeting the patient until the patient instructs otherwise or uses specific pronouns. A patient's assigned sex at birth and gender identity may differ. Do not bring up gender or sexuality if it is not relevant to the visit (eg, a gender-nonconforming patient seeking care for a hand laceration). Consider stating what pronouns you use when you introduce yourself (eg, "Tm Dr. Smith, and I use she/her pronouns") and asking patients how they would like to be addressed. Also consider ways of being inclusive (eg, ensuring correct name and pronouns are in the EMR). Reassure them about the confidentiality of their visits and be sensitive to the fact that patients may not be open about their sexual orientation or gender identity to others in their life. Remember: trust is built over time, and listening to and learning from patients about how they would like to approach the topics discussed above is key.
Cultural formulation interview	 Identify the problem through the patient's perspective. Ask the patient to describe the problem in their own words, or how the patient would describe the problem to their family and friends. Identify cultural perceptions of factors leading to a problem. Ask the patient to explain why they think they are experiencing their problem. Identify how the patient's background influences their problem. Ask the patient about what makes their problem better or worse. Investigate roles of family, community, and spirituality. Identify how culture may impact current and <u>future interventions</u>. Ask the patient if they have any concerns or suggestions about the current plan of treatment. If they do not want to follow medical advice, investigate if there is a way to combine their plans with the standard medical regimen. Identify possible barriers to care based on culture. Ask the patient if there is anything that would prevent them from seeking care in a standard medical institution. Probe for explanations and what may increase the chance of maintaining a good patient-physician relationship.
Motivational interviewing	Counseling technique to facilitate behavior modification by helping patients resolve ambivalence about change. Useful for many conditions (eg, nicotine dependence, obesity). Helpful when patient has some desire to change, but it does not require that the patient be committed to making the change. May involve asking patients to examine how their behavior interferes with their life or why they might want to change it. Assess barriers (eg, food access, untreated trauma) that may make behavior change difficult. Assessing a patient's readiness for change is also important for guiding physician-suggested goals. These goals should be Specific, Measurable, Achievable, Relevant, and Time bound (SMART).
Trauma-informed care	 Patients with history of psychological trauma should receive thorough behavioral health screenings. Regularly assess mood, substance use, social supports, and suicide risk. Focus assessments on trauma-related symptoms that interfere with social and occupational function. Always be empathetic. Do not ask invasive questions requiring the patient to describe trauma in detail. Ask permission prior to discussion. Before the physical exam, reassure patients that they may signal to end it immediately if they experience too much physical or emotional discomfort. Offer the presence of additional staff for support. Psychological counseling may be indicated. Follow-up counseling is offered (or advised) as appropriate. Remember 4 R's Realize, Recognize, Respond, Resist retraumatization.

Coronary artery disease	2			new for 2
Angina	 Chest pain due to ische: Stable—usually 2° t distribution resolvin Unstable—thrombo of chest pain or any elevation MI [NSTF Vasospastic (former transient ischemic S include cocaine, am and smoking cessati 	mic myocardium 2° to co o atherosclerosis (\geq 70% o g with rest or nitroglycerin sis with incomplete coron chest pain at rest. No card EMI]). ly Prinzmetal or variant)– T changes on ECG. Toba phetamines, alcohol, tripi on (if applicable).	ronary artery narrowing o cclusion); exertional ches n. ary artery occlusion; † in liac biomarker elevation -occurs at rest 2° to coro acco smoking is a major r tans. Treat with Ca ²⁺ cha	or spasm; no necrosis. st pain in classic frequency or intensity (vs non–ST-segment nary artery spasm; isk factor. Triggers nnel blockers, nitrates,
Myocardial infarction	Most often due to ruptu biomarkers (CK-MB, t	re of coronary artery athe roponins) are diagnostic.	rosclerotic plaque → acu	te thrombosis. † cardiac
	Stable angina	Unstable angina	NSTEMI	STEMI
PAIN	On exertion	Mild exertion or at rest	At rest	At rest
TROPONIN LEVEL	No elevation	No elevation	Elevated	Elevated
INFARCTION	None	None	Subendocardial	Transmural
ECG CHANGES	Possible ST depression and/or T-wave inversion	Possible ST depression and/or T-wave inversion	ST depression and/or T-wave inversion	ST elevation, pathologic Q waves

Coronary steal syndrome	Distal to coronary stenosis, vessels are maximally dilated at baseline. Administration of vasodilators (eg, dipyridamole, regadenoson) dilates normal vessels → blood is shunted toward well-perfused areas → ischemia in myocardium perfused by stenosed vessels. Vasodilator stress tests rely on differential flow to detect potential ischemia. Rarely, they can cause coronary steal and true ischemia.
Sudden cardiac death	Unexpected death due to cardiac causes within 1 hour of symptom onset, most commonly due to lethal arrhythmia (eg, ventricular fibrillation). Associated with CAD (up to 70% of cases), cardiomyopathy (hypertrophic, dilated), and hereditary channelopathies (eg, long QT syndrome, Brugada syndrome). Prevent with implantable cardioverter-defibrillator.
Chronic ischemic heart disease	Progressive onset of HF over many years due to chronic ischemic myocardial damage. Myocardial hibernation—potentially reversible LV systolic dysfunction in the setting of chronic ischemia. Contrast with myocardial stunning, a transient LV systolic dysfunction after a brief episode of acute ischemia.

Pancreatic secretions Isotonic fluid; low flow \rightarrow high Cl⁻, high flow \rightarrow high HCO₃⁻.

ENZYME	ROLE	NOTES
α-amylase	Starch digestion	Secreted in active form
Lipases	Lipid digestion	
Proteases	Protein digestion	Includes trypsin, chymotrypsin, elastase, carboxypeptidases Secreted as proenzymes also called zymogens Dipeptides and tripeptides degraded within intestinal mucosa via intracellular process
Trypsinogen	Converted to active enzyme trypsin → activation of other proenzymes and cleaving of additional trypsinogen molecules into active trypsin (positive feedback loop)	Converted to trypsin by enterokinase/ enteropeptidase, a brush-border enzyme on duodenal and jejunal mucosa

Tongue development fact deleted here for 2024

art revised

for 2024

2nd pass

▶ NEUROLOGY—ANATOMY AND PHYSIOLOGY

New fact/ 7 deleted facts for 2024 1st pass	Cells of the nervous system	Neurons and nonneuronal (glial) cells. Neurons —permanent, signal-transmitting cells of the nervous system composed of dendrites (receive input), cell bodies, and axons (send output). Dendrites and cell bodies can be seen on Nissl staining (stains RER; not present in axons). Markers: neurofilament protein, synaptophysin.	 CNS glial cells—neuroectoderm (except microglia, which derive from mesoderm). PNS glial cells—neural crest ectoderm. Myelin is a multilayer wrapping of electrical insulation formed around axons → ↑ conduction velocity of transmitted signals via saltatory conduction of action potentials at nodes of Ranvier (↑↑ Na⁺ channel density).
	CNS glial cells		
	Astrocytes	Physical support, repair, removal of excess neurotransmitters, component of blood-brain barrier, glycogen fuel reserve buffer. GFAP ⊕.	Largest and most abundant glial cell in CNS. Reactive gliosis in response to neural injury.
	Oligodendrocytes	Myelinate axons in CNS (including CN II). "Fried egg" appearance histologically_ (<u>"oleggodendrocytes")</u> .	Each myelinates many axons (~ 30). Predominant type of glial cell in white matter. Injured in multiple sclerosis, leukodystrophies, progressive multifocal leukoencephalopathy.
	Ependymal cells	Ciliated simple columnar glial cells lining ventricles and central canal of spinal cord. Apical surfaces are covered with cilia (which circulate CSF) and microvilli (which help with CSF absorption).	Specialized ependymal cells (choroid plexus) produce CSF.
	Microglia	Activation in response to tissue damage → release of inflammatory mediators (eg, nitric oxide, glutamate). Not readily discernible by Nissl stain.	Phagocytic scavenger cells of CNS. HIV-infected microglia fuse to form multinucleated giant cells in CNS in HIV- associated dementia.
	PNS glial cells		
	Satellite cells	Surround neuronal cell bodies in ganglia.	Similar supportive role to astrocytes.
	Schwann cells	Myelinate axons in PNS (including CN III-XII). S100 \oplus .	Each myelinates a <mark>single</mark> axon ("Schw <mark>one</mark> "). Injured in Guillain-Barré syndrome.

Central nervous system

Peripheral nervous system

 Blood-brain barrier Astrocyte foot processes Fright junction setween nonfenestrated capillary endothelial cells Basement membrane Pericytes Astrocyte foot processes Glucose and amino acids cross slowly by carrier nediated transport mechanisms. Nonpolar/lipid-soluble substances cross rapidly via diffusion. 	Heninges Ura materrity Bridging versity Paratority Brading versity Paratori	 Three membranes that surround and protect the brain and spinal cord. Derived from both neural crest and mesoderm: Dura mater—thick outer layer closest to skull. Arachnoid mater—middle layer, contains weblike connections. Pia mater—thin, fibrous inner layer that firmly adheres to brain and spinal cord. 	CSF flows in the subarachnoid space, located between arachnoid and pia mater. Epidural space—potential space between dura mater and skull/vertebral column containing fat and blood vessels. Site of blood collection associated with middle meningeal artery injury.	art revised for 2024 1st pass
	Blood-brain barrier	 Prevents circulating blood substances (eg, bacteria, drugs) from reaching the CSF/ CNS. Formed by 4 structures: Tight junctions between nonfenestrated capillary endothelial cells Basement membrane Pericytes Astrocyte foot processes Glucose and amino acids cross slowly by carrier-mediated transport mechanisms. Nonpolar/lipid-soluble substances cross rapidly via diffusion. 	Circumventricular organs with fenestrated capillaries and no blood-brain barrier allow molecules in blood to affect brain function (eg, area postrema—vomiting after chemotherapy; OVLT [organum vasculosum lamina terminalis]—osmoreceptors) or neurosecretory products to enter circulation (eg, neurohypophysis—ADH release). BBB disruption (eg, stroke) → vasogenic edema. Hyperosmolar agents (eg, mannitol) can disrupt the BBB → ↑ permeability of medications.	new image for 2024 1st pass

- Coordinated by NTS in the medulla, which receives information from the chemoreceptor trigger zone (CTZ, located within area postrema (pronounce "puke"-strema) in 4th ventricle), GI tract (via vagus nerve), vestibular system, and CNS.
- CTZ and adjacent vomiting center nuclei receive input through 5 major receptors: histamine (H_1), muscarinic (M_1), neurokinin (NK-1), dopamine (D_2), and serotonin (5-HT₃).
 - 5-HT₃, D₂, and NK-1 antagonists treat chemotherapy-induced vomiting.
 - H_1 and M_1 antagonists treat motion sickness; H_1 antagonists treat hyperemesis gravidarum.

Updated fact for 2024 1st pass	Sleep physiology	 Sleep occurs in 4-6 cycles per night, each lasting ~90 mins and consisting of 2 main stages: Non-rapid eye movement (non-REM) sleep Rapid-eye movement (REM) sleep; duration of REM sleep † through the night 	 Sleep-wake cycle is regulated by circadian rhythm, which is driven by suprachiasmatic nucleus (SCN) of hypothalamus. Low light conditions → ↓ SCN activity → ↑ norepinephrine from superior cervical ganglion → ↑ melatonin from pineal gland. 		
	SLEEP STAGE (% OF TOTAL SLEEP)	DESCRIPTION	EEG WAVEFORM		
	Awake	Alert, active mental concentration. Eyes open—beta waves (highest frequency, lowest amplitude). Eyes closed—alpha waves.	Beta Alpha	Ŗ	
	Non-REM sleep				
	Stage N1 (5%)	Light sleep; theta waves.	Manufactor and the first of the second secon	••• •	
	Stage N2 (45%)	Deeper sleep; sleep spindles and K complexes. When bruxism occurs ("twoth" grinding in N2).	Sleep spindle	•	
			K-complex	4	
	Stage N3 (25%)	Deepest non-REM sleep (slow-wave sleep); delta waves (lowest frequency, highest amplitude). When bedwetting , sleepwalking , and night terrors occur (wee and flee in N3).	www.WWWWwww.		
			Delta	R	
	REM sleep (25%)	Loss of motor tone, † brain O ₂ use, variable pulse/BP. Extraocular movements due to activity of PPRF (paramedian pontine reticular formation/conjugate gaze center). May serve memory processing function. When dreaming , nightmares, and penile/ clitoral tumescence occur (remember dreams in REM).	Beta	R	
New fact for 2024 1st pass	Factors affecting sleep architecture	 Alcohol, benzodiazepines, barbiturates: ↓ N3 and sleepwalking and night terrors). Aging: ↓ N3 and REM sleep, ↑ sleep-onset latence Depression: ↓ N3 sleep, ↑ REM sleep, ↓ REM late morning awakening (terminal insomnia). Narcolepsy: ↓ REM latency. 	REM sleep (benzodiazepines are useful for y, early morning awakening. ency, repeated nighttime awakenings, early		

Hormones acting on kidney

Potassium shifts

© 2024 First Aid for the USMLE Step 1

▶ RENAL—PHARMACOLOGY

Diuretics: effects on electrolyte excretion

		Na ⁺	HCO ₃ -	K +	Cl⁻	Ca ²⁺	Mg ²⁺	H+
New Facts	Carbonic anhydrase inhibitors	t	††	††	_/↑	-	-	ţ
for 2024	Loop diuretics	† †	t	††	††	t†	† †	t
<u>ist pass</u>	Thiazide diuretics	t	t	††	t	tŤ	-/ †	1
	K ⁺ -sparing diuretics	t	-	ţ	t	↓ <u>/-</u>	↓ <u>/-</u>	Ļ
Blood pH ↓ (acidemia): carbonic anhydrase inhibitors: ↓ HCO ₃ ⁻ reabsorption. K ⁺ sparing: aldot blockade prevents K ⁺ secretion and H ⁺ secretion. Additionally, hyperkalemia leads all cells (via H ⁺ /K ⁺ exchanger) in exchange for H ⁺ exiting cells. ↑ (alkalemia): loop diuretics and thiazides cause alkalemia through several mechan • Volume contraction → ↑ AT II → ↑ Na ⁺ /H ⁺ exchange in PCT → ↑ HCO ₃ ⁻ reabsorption. • K ⁺ loss leads to K ⁺ exiting all cells (via H ⁺ /K ⁺ exchanger) in exchange for H ⁺ enter						sparing: aldost alemia leads to veral mechanist HCO ₃ ⁻ reabsor e for H ⁺ enterin	erone K ⁺ entering ms: ption ng cells	
		In low K ⁺ state, H ⁺ (rather than K ⁺) is exchanged for Na ⁺ in cortical collecting tubule						

→ alkalosis and "paradoxical aciduria"

© 2024 First Aid for the USMLE Step 1

▶ REPRODUCTIVE—EMBRYOLOGY

Early embryonic development

Descent of testes and ovaries

	DESCRIPTION	MALE REMNANT	FEMALE REMNANT
Gubernaculum	Band of fibrous tissue	Anchors testes within scrotum	Ovarian ligament + round ligament of uterus
Processus vaginalis	Evagination of peritoneum	Forms tunica vaginalis Persistent patent processus vaginalis → hydrocele	Obliterated

► REPRODUCTIVE—ANATOMY

Drainage of reproductive organs

Venous drainage	Right ovary/testis → right gonadal vein → IVC.	new fac
	Left ovary/testis \rightarrow left gonadal vein \rightarrow left renal vein \rightarrow IVC (takes the longer way).	for 2024
	Left testicular vein enters left renal vein at 90° angle \rightarrow flow is less laminar on the left than on the	1st pass
	right \rightarrow left venous pressure > right venous pressure \rightarrow varicocele is more common on the left.	

Lymphatic drainage

Progestins	Levonorgestrel, medroxyprogesterone, etonogestrel, norethindrone, megestrol.		
MECHANISM	Bind progesterone receptors, I growth and ↑ vascularization of endometrium, thicken cervical mucus.		
CLINICAL USE	Contraception (forms include pill, intrauterine device, implant, depot injection), endometrial cancer, abnormal uterine bleeding. Progestin challenge: presence of bleeding upon withdrawal of progestins excludes anatomic defects (eg, Asherman syndrome) and chronic anovulation without estrogen.		

Antiprogestins	Mifepristone, ulipristal.
MECHANISM	Competitive inhibitors of progestins at progesterone receptors.
CLINICAL USE	Termination of pregnancy (mifepristone with misoprostol); emergency contraception (ulipristal).

Contraception	Birth control	MECHANISM	NOTES
Hormonal	Estrogen combined with progestins Progestin-only	Prevent ovulation by ↓ GnRH → ↓ LH/FSH → no estrogen surge → no LH surge Progestins also thicken cervical mucus (↓ sperm entry) and thin endometrium (less suitable for implantation)	Forms include pill (OCPs), transdermal patch, vaginal ring
Intrauterine device	Copper IUD (hormone free)	Copper IUD causes local inflammation that is toxic to sperm and ova preventing fertilization and implantation	IUDs † risk for abnormal uterine bleeding; insertion contraindicated in patients with active STI
	Progesterone IUD	Same as progestins	
Surgical	Males—vasectomy Females—tubal ligation	No sperm in ejaculate Sperm cannot reach ova	Irreversible

Medications that relax the uterus; include terbutaline (β_2 -agonist action), nifedipine (Ca²⁺ channel blocker), indomethacin (NSAID). Used to \downarrow contraction frequency in preterm labor and allow time for administration of glucocorticoids (to promote fetal lung maturity) or transfer to appropriate medical center with obstetrical care.